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Rather than the synchronization between identical chaotic systems, the “phase synchronization”
among two or many nonlinear systems with distinct nonlinear parameters is investigated. It is observed
that the dynamics of globally coupled N, periodic and N, chaotic systems can be reduced to that be-
tween matrix-coupled chaotic and periodic systems as the result of a two-step realization of the synch-
ronization among the former systems. The same situation holds even for the array of distinct systems

with a nearest-neighbor interaction.

PACS number(s): 05.45.+b

The brain is a network of a vast number of chaotic neu-
rons and for the pattern recognition the requisite condi-
tion is supposed to be the synchronization among neu-
rons and the appearance of the macroscopic coherent
mode in the network. For instance, Ott, Grebogi, and
Yorke [1] have presented recently an intriguing view that
the intelligence is supported by a chaotic switch. That is,
chaos lives with infinitely many unstable periodic orbits
and a periodic orbit transits to another most efficiently
via the chaos. A nice demonstration of this possibility is
given for a single unit chaos. Thus if the cells in the net-
work synchronize we can regard them as one unit and the
regularity of a few units may also be applied to the net-
work. This possibility is the case which we study in this
article.

There exist interesting investigations on the synchroni-
zation of chaotic cells [2-5]. In particular, Pecora and
Carroll [2] found that two chaotic attractors with exactly
the same (slightly different) nonlinear parameters syn-
chronize perfectly (keeping tiny distance) when they are
coupled together in a way that one of the dynamical vari-
ables of the master flow is substituted for the correspond-
ing one of the slave flow. One may regard this shared
variable as a common driving term and others (two sub-
systems) as under the influence of it via feedback. Their
finding that even the chaotic flows synchronize triggered
further studies including the synchronization under com-
mon noise terms [6]. As for the coupled map system
Kaneko found that the globally coupled map lattice is en-
dowed with remarkably rich clustering structure and that
the positive-negative switch can be realized among the
clusters by input [3].

We should note that all of the previous investigations
are directed to the finding of the precise synchronization
between identical units. In this article we address our-
selves to the question of what the outcome would be if we
couple together the same systems but with distinct non-
linear parameters. By constructing a simple coupling
model based on the globally coupled map lattice we find
an amazing phenomena that the systems flow synchroniz-
ing in the phase but with different sizes and/or positions.
This phenomena may be termed as the phase synchroniza-
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tion. Actually in the brain what is important is presum-
ably the phase locking between the neurons and is not the
precise status of each. Thus our observation of the phase
synchronization may have an important consequence to
the activity of the brain.

For two systems we find that two nonlinear systems
evolve in interaction in two new phase synchronizing
flows in the phase space, the new pattern depending on
the coupling, even if the set of parameters in one system
is set in the chaotic regime and that in the other in the
periodic regime. The rule of the dependence is in general
quite simple; if the coupling favors the chaotic (periodic)
system the new pattern is generally also chaotic (period-
ic). For large number of systems we prepare N systems in
two categories; N; chaotic and N, periodic systems. We
find that a rule like the above holds that the majority
wins the minority. We also find that in a certain way the
population ratio (N, /N ) can be related to the matrix pa-
rameter 0 in the N =2 model. The implication of this re-
lation is the main theme of this article.

Let us first describe our model for the simple case of
N=2. We take two nonlinear systems with variables
more than one. As an example we take the Lorenz sys-
tems and we treat them as discretized maps with the pa-
rameters for one system in the chaotic regime
(r;=28,b,=8/3,P,=10) and for the other in the
periodic regime (r,=270,b,=8/3,P,=10). At each
time step the systems (i =1,2) first evolve via the flow
equations

x;(t+At)=x,;(t)+P,(y,—x;)t)At ,
yilt+At)=y(t)+(—x;z; +r;x; —y; (t)At , (1)

z;(t+At)=z;(t)+(x;y; — b;z; (1)At .

Then they interact each other by a simple matrix with
two continuous parameters € and 6 in only one of the
three variables x,y, z.

For instance, for the “x coupling,”

(1—€))x, +ex,—>x7
20%4 2 2)
(1—€;)x, t€x x5 ,
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with €,=0¢, ,=(1—0)e (0=¢€,0=1). The mechanism is
that system 1 receives the effect of system 2 with a cou-
pling constant €, and vice versa. The systems evolve re-
peating this two-step process of map and interaction.
Roughly the parameter € gives the coupling strength and
the parameter 0 acts as a weight factor between the two
systems. The sequence of map and interaction is the usu-
al one in the coupled map analysis [3]. The difference is
that we couple only one dimension to create a ‘mean field’
and the other subsystems are evolving under the influence
of this mean field. We should add that in our model we
define the driving term as a weighted mean between the
x, and x, rather than X, and %,. The subsystems evolve
as nonautonomous flows (discretized in the time step Af?)
and the mean field is calculated as in the usual map mod-
el. Thus our model is a multidimensional map model
with coupling in one dimension. In this respect we are
using the (discretized) Lorenz system as a typical sample
of the multidimensional map. However, interestingly, the
model reduces to a smooth flow at the limit Az —0 which
can be explained from the following argument. The in-
teraction (2) serves to focus the motion of units to the
mean field while the nonlinear evolution (1) acts in de-
focusing direction. Under a certain balance the systems
fall into the attractor. This is just the same with the usu-
al coupled map model but our model differs from them in
that the subdimensions [e.g., y; and y, in (1)] have dis-
tinct nonlinear parameters (7;). Near the onset of the at-
tractor the driving variables (x; and x,) come close to
each other and the variations due to the interaction (2)
become as small as the variation in (1). As the effect the
orbits of our model become continuous flow. In fact we
have checked that all the following results are unchanged
for any choice of sufficiently small At (typically
At~107%.

The above matrix form facilitates a way to interpolate
various important limits using the parameters € and 6.
For instance in the limit of e=1 and 6=0 or 1 our model
reproduces the original model of Pecora and Carroll but
with a drastic extension that the nonlinear parameters for
each system are set at completely distinct values.

To explain our analysis of N systems, let us briefly look
at the analysis of the globally coupled map (GCM) by
Kaneko [3]. In his model N identical maps first evolve as

x;(n+1)=f(x;(n))=1—a[x;(n)]? (3)

and then interact via a mean field with a coupling (¢),
e X .
(l—e)x,»-l—Fijr—«»xi . 4
J

Under a certain balance of the nonlinearity (a) and the
coherence (€) these maps divide into two clusters and fall
into two attractors moving with periodicity two as
(+—+—+-+-+)and (—+—+—---). Here the +
(—) denotes that the value of the attractor is larger
(smaller) than the unstable fixed point x* of the map
[x*=(V'14+4a —1)/2a] at even n. In this two cluster
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regime the maps (4) reduce to

(1—e_)x,+e_x_w>x'y

(5)

(1—e )x_teyx >x'

and €. =[N, /(N +N_)]e, where N, (N_) denotes
the number of + (—) cells.

The main interest in our large N analysis is the possi-
bility of phase synchronization among many systems with
distinct parameters. As the simplest setup we take N,
systems in the chaotic regime and N, systems in the
periodic regime. After the evolution (1) in one time step
At they interact by the same equation as (4) and the y and
y' (zand z') do not interact directly. Suppose that the N,
systems and the N, systems synchronize among each and
change into two clusters. Then the complicated dynam-
ics expressed by N coupled equations is expected to
reduce to a more simple N =2 dynamics. This will allow
us to repeat formally the reduction from (4) to (5) and re-
late the dynamics of (N, N,) systems to that of the N =2
systems by a simple rule

N,

—— =0 (6)
N,+N,

and the subsequent phase synchronization between the
two clusters will be observed. This should be checked by
the observation that the synchronizing trajectories in the
large N systems with certain population ratio N,/N
agree with those in N =2 case at the weight factor 0
given by the rule (6). We will see in the following that the
two cluster formation does take place and that the con-
jectured reduction holds perfectly in our model. Of
course the dynamical requirements enabling the reduc-
tion of N to 2 are completely different between the GCM
and our model. In the GCM the requirement is that
identical systems organize themselves into two attractors.
In our model the requirement is that N, systems and N,
systems, which are distinct in the nonlinear parameters,
fall into two clusters before the phase synchronization be-
tween the two. This crucial difference should not be
overlooked. Now we are ready to present our results in
order.

(1) N=2 and the strongest (e¢=1) and one-way [6=0 or
1] limit. First we briefly review our results for e=1. The
coupling for e=1is

Ox,+(1—0)x,—x,
(7
(1—0)x,+60x;—x, .

The limit e=1 and 6=0 means x,~>x; and the limit
€=1 and 6=1 means x,;—x,. Thus at €,=1, 6=1 sys-
tem 1 becomes the master of the slave system 2. This is
nothing but the case studied in the pioneering work by
Pecora and Carroll who found that the two chaotic sys-
tems with (almost) the same parameters synchronize. We
also analyze this extreme coupling case, but we set the
two systems at completely different nonlinear parameters.
What would the consequence be for the tight, one-way
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coupling between periodic and chaotic systems? Do they
synchronize somehow or other? This question may look
absurd since in the periodic system the phase is naturally
defined while in the chaotic system only the trajectory
length or diffeomorphic transform of it may be regarded
as such. But we find that an amazing answer comes out.
The slave system actually metamorphose into the same
character with the master system and there motion is in
complete phase synchronization with the master. For in-
stance the periodic slave turned chaotic under the
influence of the chaotic master and vice versa. This is by
no means trivial, since the systems are coupled by only
one of the dynamical variables and the other degrees of
freedom are not in direct interaction. We present the
figures of the metamorphoses in the following generic
case.

(2) The case for generic € (0<e<1) and both-way
0 (0=0=1) coupling. We show in Fig. 1 the orbits of the
coupled Lorenz systems for €=0.3. Figures 1(a) and 1(b)
show the result of the coupling for 6=0.2 and 6=0.8, re-
spectively. System 1 is set in the chaotic regime (r, =28,
b,=8/3, P,=10) and system 2 is in the periodic regime
(r,=270, b,=8/3, P,=10). To be explicit the coupling
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FIG. 1. The phase synchronizing orbits of x-coupled Lorenz
systems in the y-z plane. €=0.3 and At=10"*. System 1 in the
chaotic regime (r, =28,b,=8/3,P,=10) and system 2 in the
periodic regime (r, =270,b,=8/3,P,=10). Two systems have
turned into mutually organized new shapes. (a) The coupling
parameter 0=0.2 [See Eq. (8)]. System 1 (chaotic) has
metamorphosed under the effect of system 2 (periodic). Note
the difference in the scale for each orbit. (b) The coupling pa-
rameter 6=0.8. System 2 (periodic) has followed the system 1
(chaotic).
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matrix(2) for the x variable at 6=0.2 is
0.76x,+0.24x,—x, ,
0.06x;+0.94x,+—x,

and at 6=0.8

0.94x;+0.06x,+—x, ,

)
0.24x,+0.76x, —>x, .

Metamorphosis in this case is in the way that both sys-
tems turned into mutually organized new shapes. In the
small 6 case [Fig. 1(a)] we find that the shape of the
periodic system (system 2) is not affected much while the
chaotic system (system 1) metamorphoses into periodic
flow in due course of interaction. Thus, for small 6, sys-
tem 2 wins in the competition of the structure decision.
In contrast for large 6 the winner is system 1 [see Fig.
1(b)]. The synchronization is so perfect that we do not
need to show the Lissajous plots. The Lissajous contour
is simply a diagonal line of a rectangle for any initial
points in the basin. We also have checked that the phase
synchronization occurs independently from the choice of
the coupling variables as far as the sub-Lyapunov ex-
ponent is not positive [2]. However, there seems no
unique way to compare the resulting two orbits. For in-
stance, in the case of the x-coupled Lorenz models de-
picted in Fig. 1, we need two scaling factors in both the y
and z directions in order to compare the two orbits. On
the other hand in the y-coupled Lorenz system the orbits
turn out with almost the same size. Furthermore, in the
case of the Rossler model there is no sizable difference
but some parallel shift makes the two trajectories almost
overlap. Despite these differences we find that in every
case the phase synchronization is perfect.

The most important question now is why the parame-
ter 6 determines which is the winner among the chaotic
and the periodic systems. At the limit e=1, this can be
naturally understood because as we saw above =1 (0)
means system 1 is the master (slave) and the 6 smoothly
interpolates between these limits. However, at the gener-
ic € the case is more subtle as is seen in the nontrivial
form of the coupling matrix. For instance at §=0.2 the
first equation of (8) dictates that system 1 wins the game
while the second equation dictates the other way round
and one cannot tell which is the fate of the flows. We will
obtain a plausible answer in the analysis of the N coupled
systems.

(3) The Poincaré map and Lyapunov exponents. The
role of the weight O is best illustrated by the Poincaré
map and the Lyapunov exponents in Figs. 2(a), and 2(b),
respectively. The Poincaré map is evaluated by the cut of
the contours with the conditions 2,=0 and Z <O
(i=1,2).

The Lyapunov exponents are evaluated by the basic
method [7] by keeping track of the expanding rate of
volume of the parallelepiped in the six dimensional phase
space. The 6 is varied from O to 1 in step 0.002 and at
any 6 the systems remain in phase synchronization. Fig-
ure 2 shows that in the small 6 region the systems syn-
chronize in periodic flows and in the large 6 region in
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chaotic flows. The parameter 0 indeed acts as a novel
control parameter of the nonlinearity of the whole two
systems. There are clear periodic windows among the
chaos and the agreement in the position of the windows
in Figs. 2(a) and 2(b) is perfect.

(4) The adiabatic change from period down to chaos. It
is interesting to test the ability of the parameter 6 to con-
trol the nonlinearity of the phase synchronizing systems.
By ability we mean that we can rapidly change 0 (for in-
stance from 6=0.2 to 6=0.8 within only ten turns of the
orbits) keeping perfect phase synchronization between
the systems. It is fun to press the up and down keys for
the 6 parameter and watch the dance of the synchroniz-
ing orbits in the display. The phase synchronization is
quite tight. In Fig. 3 we show some example of this. The
parameters of the models are the same as those for Fig. 2.
We adopt the y coupling and show the x-z plot. Just for
the purpose of illustration the 6 is varied continuously
with the time t by 0=2 /7 tan" '(z).

(5) The N-coupled systems. Our model consists of N-
coupled Lorenz systems: the N, systems with parameters
in the chaotic regime and the N, systems in the periodic
regime and they evolve from completely random starting
points.

400
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0 0.5 1.0

FIG. 2. The same Lorenz systems as Fig. 1 (but »,=300).
For small 0 the two systems synchronize in periodic flows and
for large 6 in chaotic flows. The agreement in the position of
the windows is perfect. (a) The Poincaré map versus 0 with the
cut conditions z;=0 and Z; < 0 (i=1,2). (b) The six Lyapunov
exponents versus 8. One exponent is at zero and the line around
A= —2is a twofold degenerate. The minimum exponent moves
far down from the frame.
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FIG. 3. The adiabatic change of y-coupled flows in the x-z
plane in perfect phase synchronization from period down to
chaotic regime. The parameters of the models are the same as
those for Fig. 2. The solid curve for system 1 and the dashed
curve for system 2. The 6=2/mtan" (¢t —t,) and 1, is the time
that the flows stabilized in the periodic orbits.
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FIG. 4. The N Lorenz system globally coupled in the vari-
able x;; N, chaotic systems (r=28,b=8/3,P=10) and the N,
periodic systems (r=270,b=8/3,P=10). Random start. (a)
The two-step process to the perfect phase synchronization. Pa-
rameters are the same as Fig. 1. The N, =4 and N,=16 sys-
tems gradually bunch together among each during ¢t =0 to t =2
and the two bunches mutually derives themselves into phase
synchronization after ¢ =2. (b) The Poincaré map of totally
N =250 Lorenz systems versus the number of chaotic members
N,;. This agrees with the N =2 Poincaré map in Fig. 2(a), espe-
cially as for the pattern of the periodic windows structure and
gives an additional verification of the two-step dynamics via the
relation [see Eq. (6)].
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Globally coupling. First let us investigate the mean
field type coupling (4) and the y; and y/ (z; and z/) do not
interact directly. We observe that the initial N trajec-
tories soon change into two perfectly phase synchroniz-
ing orbits which look just like those in Fig. 1. As is clear-
ly seen in Fig. 4(a) the synchronization proceeds in two
steps. First each of the N, and N, systems bunch togeth-
er among each. Then the two bunches mutually
interact—just like the two units in the N =2 analysis—
and finally the whole N systems derive themselves into
two phase synchronizing orbits in the phase space, one
consist of N, units and the other of N, units. As we have
discussed at (6) this two-step process should also be
checked by the correspondence between the population
ratio in the N systems and the weight factor 0 in the
N =2 matrix coupling model (2). Figure 4(b) exhibits the
Poincaré map of the globally coupled N, chaotic and N,
periodic systems with respect to the number of chaotic
systems (N;). The agreement with the N =2 Poincaré
map in Fig. 2(a)—even as for the pattern of the periodic
windows structure— gives further verification of this
two-step dynamics via the relation (6).

In the N =2 analysis we wished to seek out the real
reason of the tendency that the large 6 favors system 1.
As relation (6) is now established, the tendency that the
large (small) 6 favors system 1 (2) can be rephrased in
terms of the N systems that the majority wins over the
minority systems. This gives a plausible answer to the

~ question posed in the N =2 analysis.

N systems with nearest-neighbor couplings. In the glo-
bally coupled model there is not notion of the distance.
By this simplification the essential feature of the synch-
ronization can be best studied in a scale invariant manner
but the lack of the distance forbids the analysis of the
spatiotemporal structure of the synchronization. There-
fore, we set N (chaotic) and N, (periodic) systems in ran-
dom combinations on a circle and let them interact with
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the nearest-neighbor both-way coupling

1—% xi+§xi+1+—>x,- )
(10)
1—% x,-+,+§xi»——>xi+1 (i=1,...,N).

Figure 5 shows the spatiotemporal plot of the evolu-
tion of the N =20 systems with N, =16 and N, =4 from
the random initial values and €=0.3. Despite that the
four periodic systems are far separated from each other
by the chaotic systems, we see that amazingly they quick-
ly turn into mutual synchronization as is observed as syn-
chronizing peaks. This “barrier penetration” also occurs
for the other 16 chaotic systems and the chaotically oscil-
lating sheet exhibits their synchronizing motion. This
first step—the cluster formation—completes roughly in
2 sec and then, as the second step, the periodic cluster
metamorphose into perfect phase synchronization with
the chaotic cluster. For illustration we can only show the
small N case but we have numerically confirmed this
route to the synchronization in larger systems and also in
the random spatial distribution of the N; and N, sys-
tems. Thus the phase synchronization in the nearest-
neighbor model also proceeds in two steps.

In conclusion we investigated the coupled distinct non-
linear systems. We found that they derive themselves
into phase synchronization. For N =2 we constructed a
simple matrix model and found that we can control the
synchronization by a single parameter in the model 6.
For large N we considered the coupling of N, systems
with parameters in the chaotic regime and N, systems in
the periodic regime. We again found a complete phase
synchronization. Furthermore, we found that the synch-
ronization in many systems proceeds in two steps; the
like systems first synchronize among themselves forming

3. sec

FIG. 5. The N =20 systems with nearest-neighbor both-way (6=0.5) x couplings (¢=0.3) and the spatiotemporal structure of the
two-step process to the phase synchronization. N, =16 (chaotic) and N, =4 (periodic) systems. The y coordinates of the latter are
scaled down by factor 20. The four periodic systems are at i =2, 8, 13, 17 and are far separated from each other by the other 16
chaotic systems. The first process completes in 2 sec; the periodic systems quickly turn into four synchronizing peaks due to
penetrating interaction across the chaotic systems and the chaotic systems form a coherently oscillating sheet. In the second process,
the periodic peaks metamorphose into perfect phase synchronization with the chaotic cluster.
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two clusters and then as two units they start the
metamorphosis to the final phase synchronization. We
verified this two-step process by the direct inspection as
well as by the check of the validity of the relation (6) be-
tween the dynamics of the N systems and the two sys-
tems.

We often come across the case that the synchroniza-
tion in the phase is the important issue while the magni-
tudes of components are not much relevant. For instance
in the path integral the classical trivial and nontrivial
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configurations dominate the amplitude as all nearby
paths contributes coherently with different magnitudes.
We have relaxed the notion of synchronization to the
phase synchronization and in this freedom we have seen
an interesting possibility of a reduction of the large sys-
tem dynamics to the small system dynamics.
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FIG. 5. The N=20 systems with nearest-neighbor both-way (6=0.5) x couplings (¢=0.3) and the spatiotemporal structure of the
two-step process to the phase synchronization. N, =16 (chaotic) and N, =4 (periodic) systems. The y coordinates of the latter are
scaled down by factor 20. The four periodic systems are at i =2, 8, 13, 17 and are far separated from each other by the other 16
chaotic systems. The first process completes in 2 sec; the periodic systems quickly turn into four synchronizing peaks due to
penetrating interaction across the chaotic systems and the chaotic systems form a coherently oscillating sheet. In the second process,
the periodic peaks metamorphose into perfect phase synchronization with the chaotic cluster.



